TRIMETHYLSILYL TRIFLATE CATALYZED ALDOL-TYPE REACTION OF ENOL SILYI. ETHERS AND ACETALS OR RELATED COMPOUNDS

Shizuaki Murata Department of Chemistry, College of General Education, Nagoya University, Chikusa, Nagoya 464, Japan Masaaki Suzuki and Ryoji Noyori[®] Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

(Received in UK 15 November 1987)

<u>Abstract</u> — Trimethylsilyl triflate with or without added hindered tertiary amines catalyzes directed condensation of enol trimethylsilyl ethers with acetals, orthoformate, or 2-acetoxytetrahydrofuran or -pyrans to give the corresponding β -alkoxy carbonyl compounds. Reaction of enol silyl ethers and carboxonium triflate ion-pair intermediates occurs via acyclic transition states and exhibits moderate to high erythro selectivity independent of the geometry ($\underline{E}/\underline{Z}$) of the enol silyl ethers.

Directed aldol reaction is one of the most fundamental carbon-carbon bond-forming reactions.¹ This reaction is capable of controlling stereochemistries of several contiguous asymmetric centers² and hence provides a powerful tool for syntheses of complex natural products.³ Reactions of eq 1 (M = metallic species) are well precedented. In aprotic media, some preformed enolates having a Lewis acidic counter ion undergo nucleophilic reaction to carbonyl compounds via a six-membered pericyclic transition state 1 to give the β -oxido carbonyl products. Eq 2 is the combination of a "naked" enolate and unactivated carbonyl compound, while eq 3 represents reaction of a rather unreactive enolate toward a cationically activated carbonyl substrate (M = non-Lewis acidic atom, E^{*} = cationic activating species). These condensations, unlike reactions of eq 1, are characterized by the absence of species that assemble the two oxygen atoms of the enolates and carbonyl compounds and, consequently, would

proceed via acyclic extended transition states, 2 and 3, rather than cyclic structures. The anionic version, eq 2, has been exemplified by reaction of tris(dialkylamino)sulfonium $(TAS)^4$ or quaternary ammonium enolates.⁵ Described herein is an example of the cationic alternant, eq 3.

Trimethylsilyl triflate (TMSOTf), a super-reagent bearing a highly electron-withdrawing triflate molety, can activate various oxygen-containing organic compounds through one-center (not multi-center) interaction at the electron-deficient silicon atom⁶ and, in some cases, generates reactive ion-pair intermediates even in aprotic solvents. Indeed reaction of enoi silyl ethers⁷ and acetals or related compounds is catalyzed efficiently by TMSOTf, leading to the aldol-type products in a directed manner.⁸ In addition, the stereochemical outcome is in contrast with those of ordinary aldol reactions of eq 1.

Aldol Reaction

As generalized by eq 4, reaction of enol trimethylsilyl ethers (4) and acetals (5), giving the aldol products (6), was accomplished by the use of TMSOTf as the catalyst (1-10 mol %). The condensation proceeded at temperatures as low as -100 to -78 °C in dichloromethane or 1,2-dichloroethane. The reaction in pentane, toluene, or ether was slow. The aldol products were stable under the reaction conditions and did not undergo β -elimination of alcohols, leading to α , β -unsaturated carbonyl compounds. Both open-chain and cyclic enol silyl ethers were usable. Besides acetals, certain orthoesters and acylals were employable as electrophiles. The results are summarized in Table 1.

4260

enol silyl ether	acetal or related compound	product			
		structure	no.	% yleid	
4a	5e	J'	. 6a	75	
4a	5d		н , 60	73 <u>b</u>	
48	51	Jit.	6c	96	
4a	Sg	Ji.	6d	87	
4a	Sh	J ⁱ	6e	81	
4b	5d		61	<u> 50р'с</u>	
40	Sh	×i~	6g	96	
41	5 a	H Coche	6h	75	
41	Sf	۳ ۲	61	85	
4j	Sf		6j	87	
44	51	۴ ۴	6k	87	
41	5f	j.	61	87	
41	51	CCH,	6æ	89	
4m	5f	j f	6n	93	

Table 1. The TMSOTF Catalyzed Reaction of Enol Silyl Ethers with Acetais⁸

^a Reaction was carried out in the presence of 5 mol % TMSOTf in dichloromethane at -78 °C for 4-12 h. ^b Reaction using 10% TMSOTf. ^c Reaction for 19 h.

The ease with which the reaction occurs is sensitive to steric environment. For instance, reaction of the cyclic enol silvi ether **41** or its 6-methyl derivative **4m** and acetone dimethyl acetal (**5f**) proceeded ordinarily but the 2-methylated analogue **4n** failed to give the condensation product; the latter was recovered without change in both independent and competitive experiments. Although trimethyl orthoformate (**5i**) reacted readily with **41**, trimethyl orthoacetate (**5j**) did not afford the aldol product, partly because of decomposition of TMSOTF catalyst. When **41**, **5j**, and TMSOTF were mixed in 1:1:1 ratio in dichloromethane at 25 °C, methyl acetate, methoxytrimethylsilane, and methyl triflate were formed in quantitative yields and **41** was recovered without change.

Notably, formaldehyde acetals of type 7 were inert to the TMSOTf catalyzed reaction under the standard conditions. A simple solution of this problem, however, was obtained by addition of a sterically hindered tertiary amine to the reaction mixture. Thus reaction of eq 5 was effected in dichloromethane at room temperature by using an equimolar mixture (5-10 mol %) of TMSOTf and 2,6-

amine = 2,6-dl-t-butylpyridine (9a) or dicyclohexylmethylamine (9b)

			product		
enol silyl ether	dialkoxy- methane	added amine	structure	no.	% yield
49	7a	9a	C CCH4CeHe	8a	92
4 e	7a	9a	C CH2C4H4	8b	77
4 k	7a	9a	OCH ₂ C ₆ H ₈	8c	76
4k	7a	9Ъ	Q OCH₂C₀H₅	8c	65 <u>b</u>
41	7a	9a	o och ₂ C ₆ H ₆	8d	87
41	7ъ	9a	°CH₄	8e	48
4m	7a	9a	CH4C4H4	8f	78

Table 2. The TMSOTf/Amine Catalyzed Reaction of Enol Silyl Ethers with Dialkoxymethanes^a

<u>a</u> Reaction was carried out with 5 mol % of the catalyst in dichloromethane at room temperature (12-22 °C) for 12-16 h. <u>b</u> Reaction was carried out with 1 mol % catalyst for 100 h.

4262

di-<u>t</u>-butylpyridine (9a) or dicyclohexylmethylamine (9b) as a catalyst system. 2,6-Diphenylpyridine or di(isopropyl)ethylamine was less effective and unhindered pyridine or triethylamine was totally ineffective. The results are listed in Table 2. Benzyl group in the ketones (8, R = $C_6H_5CH_2$) was removed by hydrogenolysis over Pd/C catalyst. The hydroxymethyl and alkoxymethyl ketones are masked forms of synthetically useful α -methylene ketones. The TMSOTf/amine combined system also catalyzed the reaction of eq 4 proceeding at room temperature.

Reaction Mechanism

We consider that the aldol-type reaction is occurring by mechanism outlined by eq 6-9.⁹ First, acetal oxygen gives an electron pair to the silicon atom in TMSOTf in a reversible fashion to form the complex 10 (eq 6).¹⁰ This complex then undergoes fragmentation to generate the key carboxonium triflate ion pair, 11, and alkoxytrimethylsilane (eq 7). The reactive carboxonium ion is trapped by the enoi silyl ether 12 to give the adduct 13 (eq 8), which ultimately collapses into the β -alkoxy ketone 14 and TMSOTf catalyst (eq 9). Fragmentation of eq 7 is facilitated by electron-donating property of R¹ substituents and perhaps by relief of steric compression in 10. Lack of reactivity of simple dialkoxymethanes of type 7 is thus easily understandable. When nucleophilic trapping of 11 (eq 8) is not rapid, 11 may collapse into the corresponding carbonyl compound and alkyl triflate (eq 10).

Operation of such mechanism was supported by ${}^{1}H$ and ${}^{13}C$ NMR study (Table 3). First, when benzaldehyde dimethyl acetal (5c) and TMSOTf were mixed in 1:1 ratio in dichloromethane- \underline{d}_{2} at 25 *C, production of benzaldehyde and methyl triflate (4% each) was detected. The remaining acetal 5c (96%) exhibited broad signals at somewhat lower field, indicating the reversible nature of eq 6. In addition, an equimolar mixture of benzaldehyde and methyl triflate was found to generate a small amount (ca. 4%) of <u>O</u>-methylated benzaldehyde.¹¹ The signal assignment was confirmed by independent measurement of the spectra of these compounds and their mixtures under comparable conditions.

	¹³ C		1 _H			
compound or system	signal	δ/ppm (width) <u>b</u>	signal	distri- bution	δ/ppm (width)b	
С ₆ н ₅ Сн(осн ₃) ₂	(СН ₃ О) ₂ <u>С</u> Н	102.7 (6)	(СН ₃ 0) ₂ С <u>Н</u>		5.31 (2)	
	<u>с</u> н ₃ о	51.9 (5)	с <u>н</u> 30		3.35 (1)	
с ₆ н ₅ сно	<u>с</u> но	191.5 (6)	СНО		9.94 (2)	
CH3OTI	<u>с</u> н ₃ о	61.4 (5)	с <u>н</u> 30		4.11 (2)	
TMSOTf	<u>C</u> H ₃ Si	0.3 (5)	С <u>Н</u> зSi		0.47 (2)	
С ₆ Н ₅ СН(ОСН ₃) ₂	С ₆ н ₅ <u>С</u> но	191.7 (20)	с ₆ н ₅ с <u>н</u> о	4%	9.93 (8)	
and TMSOTf	С ₆ Н ₅ <u>С</u> Н(ОСН ₃) ₂	105.8 (48)	С ₆ H ₅ C <u>H</u> (ОСH ₃) ₂	96%	5.43 (8)	
(1:1)	<u>C</u> H ₃ OTf	61.4 (5)	C <u>H</u> 3OTf	4%	4.11 (5)	
	C6H5CH(OCH3)2	52.1 (5)	C6H5CH(OCH3)2	96%	3.28 (3)	
	(CH3)3SIOTE	-0.8 (5)	(CH ₃) ₃ SIOTf	96%	0.39 (10)	
C ₆ H ₅ CHO and	с ₆ н ₅ сно	192.8 (20)	С ₆ H ₅ C <u>H</u> O	96%	9.92 (5)	
CH ₃ OTf (1:1)			с ₆ н₅сн ₌о ́с <u>н</u> ₃	4%	4.57 (4)	
	<u>с</u> н ₃ отг	61.4 (4)	CH ₃ OTf	4%	4.13 (4)	
C ₆ H ₅ CHO and	с ₆ н ₅ сно	192.6 (8)	с ₆ н ₅ с <u>н</u> о	100%	9.90 (3)	
TMSOTf (1:1)	(<u>C</u> H ₃) ₃ SiOTf	0.0 (6)	(CH3)3SIOTf	100%	0.38 (4)	

Table 3. ¹H and ¹³C NMR Spectra^a

<u>a</u> Measured on a JEOL GX-270 spectrometer in CD_2Cl_2 at 25 °C by using cyclohexane as an internal standard (C, δ = 26.4; H, δ = 1.36). <u>b</u> At half hight of the peak.

Addition of tertiary amines tends to decrease the reaction rate. Nevertheless, TMSOTf/hindered amine combined catalyst systems promote the reaction of otherwise unreactive dialkoxymethanes. Here the tertiary amines modify the reaction mechanism. As shown in eq 11, Si-OTf bond in the catalyst is cleaved by addition of a tertiary amine to form the silylated ammonium triflate, 15, 12 acting as the actual silylating agent for the acetal substrate. Now the oxonium species 16 formed by eq 12, in comparison to 10, has a much better leaving group and, even when R^1 is hydrogen, readily generates the carboxonium triflate 11 (eq 13) accomplishing the aldol reaction.

$$(CH_{3})_{3}SiOTf + NR_{3} \longrightarrow (CH_{3})_{3}Si - \overset{+}{NR_{3}} TfO - (11)$$

$$(CH_{3})_{3}Si - \overset{+}{NR_{3}} TfO^{-} + \overset{R^{1}}{R^{1}} \overset{OR^{2}}{OR^{2}} \longrightarrow \overset{R^{1}}{R^{1}} \overset{OR^{2}}{C} \overset{OR^{2}}{A^{-}} TfO^{-} + NR_{3} (12)$$

$$\stackrel{I}{I5} \overset{I}{I5} \overset{I}{I5}$$

Selectivities

<u>Chemoselectivity.</u> Ketones and alkanals did not react with enol silvi ethers in the presence of TMSOTf or a TMSOTf/**9** mixture. Certain conjugated aldehydes such as benzaldehyde, (<u>E</u>)-2-hexenal, or cinnamaldehyde underwent TMSOTf-catalyzed condensation with **41** but only sluggishly.⁹ For example, the reaction of benzaldehyde and **41**, leading to the aldol trimethylsilvi ether, appeared to be >100-fold slower than the reaction of the dimethyl acetal **5**c and **41**.¹³ As demonstrated by the intermolecular and intramolecular competition experiments of eq 14 and 15, the condensation is highly selective to acetals. Under such cationic conditions, acetal functionality is regarded as an activating group of carbonyl molety rather than a protective group. Carbonyl compounds could have interaction with TMSOTf⁶ to lead reversibly to pentacoordinate silicon species,¹⁰ but such activation is not enough for ketones or alkanals to cause smooth reaction with weakly nucleophilic enol silyl ethers.¹⁴ ¹³C and ¹H NMR spectra of benzaldehyde, upon addition of an equimolar amount of TMSOTf, did not cause any significant change except some signal broadening (Table 3).

<u>Regioselectivity.</u> The absence of double-bond migration in enot silvi ethers allows for the regiospecific condensation at original sp^2 -hybridized carbon. For example, a single product was obtained with 4m.

<u>Stereoselectivities.</u> Prochiral enol silvi ethers and carboxonium ions possess enantiofaces, and energy difference in their diastereometric face-matching results in the formation of three and erythro products (17) in unequal amounts (eq 16). As summarized in Table 4, the kinetic stereoselection of the present aidel reaction exhibited moderate to high erythro/three ratios regardless of geometry (\underline{E} or \underline{Z}) of enol silvi ethers. The stereochemistries of the β -aikoxy carbonyl products were confirmed by Q-aikylation of stereo-authentic aidel products. This general erythro-selection is in marked contrast to the ordinary aidel reaction of Lewis acidic metal coordinated enolates (eq 1) whose stereochemistry is defined by enolate geometry.^{1,2} Addition of tertiary amines did not alter the steroselectivity, as consistent with the proposed mechanism.¹⁵

		product				
enol silyl ether	acetal or compound	major structure	no.	% yield	erythro:threo	
4c	5c		17a	83	71:29	
4d <u>b</u>	5h	H H O	175	78	70:30	
4 e	5c		17a	97 <u>C</u>	84:16 <u>C</u>	
4e	5e		17c	<u>98C</u>	76:24 ^C	
4 e	5h		17d	91	62:38	
4f	5c	X CH.	17e	94	95:5	
4g	5c	Xs CHs	17f	92	78:22	
4g	5h	×s ¹ , H₀	17g	83	67:33	
4g	5h	Xsifo	17g	7 <u>9d,e</u>	78:22 <u>d</u>	
4h	5c	CH30 CH3	17h	74	55:45	
41	5a		17i	91 <u>C</u>	89:11 <u>C</u>	
41	5b		17j	95 <u>C</u>	86:14 <u>C</u>	
41	5c		17k	89 <u>C</u>	93:7 <u>C</u>	
41	5c		17k	76 <u>f</u>	75:25 <u>f</u>	

Table 4. Erythro/Threo Selectivity in the TMSOTf Catalyzed Aldol Reaction^a

^{<u>a</u>} Reaction was carried out with 5 mol % of TMSOTf in dichloromethane at -78 °C for 4-10 h. <u>b</u> A 65:35 mixture of the <u>Z</u> and <u>E</u> enoi silvi ether. <u>c</u> Reaction using 1 mol % of TMSOTf. <u>d</u> Reaction in pentane. <u>e</u> Based on consumed starting material (49%). <u>f</u> A TMSOTf/2,6-di-<u>t</u>-butylpyridine mixture (5 mol %) as catalyst.

The unique stereoselection can be understood by assuming acyclic, extended transition structures.⁹ In the reaction system there exists no ionic species capable of assembling enol silvi ethers and carboxonium ion simultaneously, removing the possibility of cyclic transition states. Among three possible structures, 18-20, the anti conformer 18 would be the most favorable because the electrostatic repulsion of the positively charged oxygen atoms is minimized. Now as is seen in Scheme I, preference of

the erythro-generating transition structures is obvious. In the reaction of the <u>E</u>-enol silvi ether 21 and carboxonium ion 22, the erythro transition state 23 arising from the <u>re/si</u> face matching is favored over the three transition state 24 (<u>re/re</u> or antipodal <u>si/si</u> matching) which suffers significant nonbonded interaction between gauche R^2 and R^3 groups. With the <u>Z</u>-enol silvi ether 25, for the same reason, the erythro transition state 26 is stabler than the three form 27.

Scheme I.

4268

The erythro-selective aldol reaction is reminiscent of reaction of TAS enolates and aldehydes which is categorized into eq 2.⁴ We have made a similar argument on the transition state structure, which coincides nicely with molecular orbital calculations on gas-phase reaction of an enolate and formaldehyde.¹⁶ Closely related mechanisms have been adopted to explain the stereochemical outcome of some other cationic aldol condensations.¹⁷

Another characteristic steroselection was observed in reaction of certain chiral carboxonium intermediates possessing diastereofaces. Thus reaction of the bicyclic tetrahydropyranyl acetate 28 (equatorial/axial = 3:1)¹⁸ and enol silyl ether 4a catalyzed by TMSOTf produced the equatorial isomer 31 exclusively. This stereoselectivity is interpretable in terms of the preferred structure of the intermediary ion pair shown in Scheme II. When the possible diastereomeric ion pairs, 29 and 30, are compared, the former having triflate in the α face is the more stabilized by interaction between the C(2) vacant orbital and triflate anion through anomeric effect.¹⁹ The α -ion pair 29 reacts with the enol silyl ether on the β -face via a half-boat transition state,²⁰ leading to the equatorial product 31. Conformationally flexible acetate substrates, 32a and 32b, behaved similarly to afford the cis condensation products, 33a and 33b, respectively.⁹

Conclusion

In the presence or absence of hindered tertiary amines, TMSOTf catalyzes aldol-type condensation of enol trimethylsilyl ethers and acetals (but <u>not</u> ketones and alkanals), orthoesters, acylals, etc. The reaction conditions are extremely mild (low temperatures, aprotic, nonbasic, and only very weak nucleophile present). The directed aldol reaction is irreversible and the β -alkoxy carbonyl compounds are kinetically determined. No β -elimination forming α , β -unsaturated carbonyl compounds takes place. The reaction proceeds by way of carboxonium triflate ion pairs generated from TMSOTf and acetals or related compounds. The electrophilic reaction toward enol silyl ethers occurs via acyclic, extended transition states and exhibits unique stereoselectivities, particularly, erythro selectivity independent of enol geometry.

Experimental

General.

Chemical shifts of ¹H NMR spectra were reported as ⁵ values in parts per million relative to tetramethylsilane ($\delta = 0$). As catalyst, trifluoromethanesulfonic acid-free TMSOTf was used. This was prepared by the standard procedure²¹ and purified by distillation after stirring with ca. 3 vol²⁶ of triethylamine. ^{12C} Absence of triethylamine was confirmed by H NMR. Enol silvi ethers (4) were synthesized by the standard procedures. ^{220,23} Dimethyl and dibenzyl acetals (Sa-Se) were prepared by acid catalyzed reaction of the corresponding aldehydes and ketones with alcohols. 2-Acetoxytetrahydrofuran (s_0) and -pyran (s_h) were obtained by acetylation ($Ac_2O/pyridine)$ of the corresponding hemiacetals. 2^{2} -Acetoxytetrahydropyrans (28, 32a, and 32b) were synthesized by procedures described in references. 2^{0a} , 2^{4} Commercially avairable compounds were distilled before use.

General Procedures for Aldol-Type Condensation of Enol Silyl Ethers and Acetals.

<u>Reaction of 1-Trimethylsiloxy-1-phenylethene (4a) with Butanal Dimethyl acetal (5a)</u>. To a solution of 4a (0.20 g, 1.0 mmol) and 5a (0.12 g, 1.1 mmol) in CH_2CI_2 (3 ml) was added 0.1 M CH_2CI_2 solution of TMSOTF (0.5 ml, 0.05 mmol) at -78 °C. After 10-h stirring, the mixture was poured into satd NaHCO₃ aqueous solution and extracted by CH_2CI_2 (30 ml x 3). Combined extracts were passed through a short K_2CO_3 column and concentrated. Column chromatography on silica gel (30 g) eluting with a 10:1 mixture of petroleum ether and ether gave 3-methoxy-1-phenylhexan-1-one (6a, 0.15 g, 2.75%) as columnated.

g, 75%) as colorless oil. Unless otherwise stated, results in Table 1 and Table 4 were obtained by similar reaction and workup procedures.

Reaction of 1-Trimethylsiloxycyclopentene (4k) with Dibenzyloxymethane (7a). To a mixture of 4k (0.50 g, 3.2 mmol), 7a (0.77 g, 3.1 mmol), and 2,6-di-t-butylpyridine (9a, 0.06 g, 0.3 mmol) in CH₂Cl₂ (6 ml) kept at 12 °C was added 0.1 M CH₂Cl₂ solution of TMSOTf (3 ml, 0.3 mmol). The mixture was stirred for 10 h and then worked up as described above. Chromatography on a silica-gel (30 g) column eluting with a 3:1 mixture of petroleum ether and ether gave 2-benzyloxymethylcyclopentanone (8c, 0.48 g, 76%) as colorless oil. Results indicated in Table 2 were obtained by the similar procedures.

Confirmation of the Stereochemistries of 3-Alkoxy Ketones.

Authentic β -alkoxy ketones were obtained by Q-methylation or -benzylation of lithium alkoxides of the corresponding β -hydroxy ketones.⁴² As shown in Table 5, although some kinetic discrimination was observed between the diastereometric aldols, depending on the substrates, the good material balance and diastereometric ratios indicate that no significant erythro/threo isomerization occurred during the reaction. A general procedure for the alkylation is illustrated by reaction as follows.

Methylation of erythro-2-Hydroxybenzylcyclohexanone (erythro-34e). Starting erythro-34e was obtained by reaction of the cyclohexanone lithium enolate with benzaldehyde followed by chromatographic separation.^{22a} This aldol (96 mg, 0.47 mmol) was treated with 1.6 M hexane solution of n-butylseparation, 22^{a} This aldol (96 mg, 0.47 mmol) was treated with 1.6 M hexane solution of n-butyl-lithium (0.28 m), 0.45 mmol) in a 1:1 mixture of THF and ether (5 ml) at -78 °C for 10 min. To this was added methyl fluorosulfonate (0.52 ml, 0.50 mmol) and the mixture was stirred for an additional 1 h. The resulting mixture was diluted by addition of ether (30 ml) and washed with said NaHCO₃ aqueous solution. After drying and concentrating the mixture in usual manner, the crude oil was subjected to column chromatography on silica gel (5 g). Eluting by a 10:1 mixture of petroleum ether and ethyl acetate afforded less polar erythro-2-methoxybenzylcyclohexanone (erythro-17k, 29 mg, 31%) as colorless oil, and subsequent elution by a 3:1 mixture of petroleum ether and ethyl acetate gave three-17k (4 mg, 4%) together with erythro-37e (51 mg, 53% recovery).

The stereochemistries of 17b, 17d, 17f, 17g, and 17h were established by transformation from the known compouds as follows.

<u>Methyl</u> three-3-Methoxy-2-methyl-3-phenylpropionate (three-17h). three-2-Methyl-1-phenyl-3-buten-1-ol which was obtained by $CrCl_2$ (2.44 g, 20 mmol) mediated condensation of benzaldehyde (0.53 g, 5 mmol) with 1-bromo-2-butene (1.40 g, 10 mmol)²⁵ was treated by NaH (8 mmol) in DMF (20 ml) fol-lowed by methyl iodide (1.5 ml) at 0 °C. Ozone was passed through an ethyl acetate solution of the above obtained methyl ether at -78 °C and then the mixture was treated with a mixture of 35% H_2O_2 (5 ml) and satd NaHCO₃ aqueous solution (10 ml) at 25 °C. After the mixture was acidified by addition of dll HCl, the organic layer was separated and evaporated. The residue was treated by ethereal solution of CH_2N_2 (30 ml), generated from N-methyl-N-nitrosourea (2g), and the crude product was subjected to column chromatography on slica gel (30 g) eluting with a 4:1 mixture of petroleum ether and ethyl acetate to give three-17h (0.57 g, 55%).

<u>Conversion of erythro-3-Methoxy-2-methyl-3-phenylpropionic Acid t-Butylthio Ester (erythro-17f) to erythro-17h.</u> To a solution of the thio ester (17f, 47 mg) in CH₃OH (2 mi) was added Hg(OCOCF₃)₂ (0.2 g) at 0 °C. After 5-min stirring, the mixture was concentrated and the residue was subjected to preparative silica-gel TLC being developed with a 2:1 mixture of petroleum ether and ether. Methyl erythro-3-methoxy-2-methyl-3-phenylpropionate (erythro-17h, 15 mg, 40%) was obtained as coloriess oil.

erythro-1-Phenyl-2-(tetrahydropyran-2-yl)propan-1-one (erythro-17d). To a THF (30 mi) solution of propiophenone lithium enoiate prepared from propiophenone (2.71 g, 20 mmol) and LDA (21 mmol) was added 5-(tetrahydropyran-2-yloxy)pentanal (3.43 g, 20 mmol) at -78 °C. After 3 min, the mixture was worked up in usual manner. Silica-gel (100 g) column chromatography eluting with a 3:1 mixture of hexane and ethyl acetate gave an isomeric mixture of the corresponding 8-hydroxy ketone (3.83 g,

β~hydroxy ketone 34		β-alkoxy ketone 17			recovered hydroxy ketone 34		
structure	no.	ds purity <u>a</u>	по.	% yield	ds purity a	% yield	ds purity ^a
	34a	100	erythro-17a	24	81	67	80
	34 a	100	erythro-17c	18	92	58	83
X	34b	97	erythro-17e	27	93	37	81
	34 c	98	<u>erythro</u> -17i	16	100	67	92
	34d	97	<u>erythro</u> -17j	17	100	55	95
	34e	100	erythro-17k	31	100	53	93
	37f	100	threo-17k	22	100	43	100

Table 5. Q-Alkylation of β -Hydroxy Ketones

^a Percent diastereomeric purity.

62%). This mixture was treated by pyridinium p-toluenesulfonate (50 mg) in boiling methanol (50 ml) followed by methanesulfonyl chloride (0.5 ml) in pyridine (15 ml) at 0 °C. After the usual workup, silica-gel (50 g) column chromatography eluting with a 20:1 mixture of chloroform and ethanol gave less polar methanesulfonyl diester (0.383 g) and more polar monoester (1.27 g). The latter was subjected to preparative silica-gel TLC and the plate was developed seven times by a 2.5:1 mixture of cyclohexane and THF to give the less polar <u>erythro-methanesulfonate</u> (96% isomeric purity) and the more polar three isomer (89% purity) as colorless oil. ¹H NMR spectrum of the erythro isomer, upon irradiation of the neighboring methyl signal at δ 1.23, exhibited the C(2)-H signal at δ 3.45 as doublet with coupling constant of 3.7 Hz. The coupling constant of the <u>three-isomer</u> was 6.7 Hz.

To a solution of the <u>erythro</u>-methanesulfonate (24 mg, 0.08 mmol) in THF (1 ml) was added 1 M THF solution of LiAlH₄ (0.04 ml) at -78 °C. After the usual workup, the organic residue was treated with 30% methanolic KOH in methanol (3 ml) followed by treatment with pyridinium chlorochromate (0.1 g) in CH₂Cl₂ (5 ml). TLC purification using a 2:1 mixture of petroleum ether and ether as solvent gave 95% stereoisomerically pure <u>erythro</u>-17d (14 mg, 89%) as colorless oil.

<u>Conversion of 2-(Tetrahydropyran-2-yl)propanal (17b) to 17d.</u> A diastereomeric mixure of 17b (7:3 ratio, 20 mg, 0.14 mmol) was mixed with 1 equiv of phenyllithium in ether (1 ml) at -78 °C and then with Jones reagent in acetone (2 ml) at 0 °C. A mixture of <u>erythro-</u> and <u>threo-17d</u> (75:25 ratio, 14 mg, 46%) was obtained by preparative TLC using a 2:1 petroleum ether/ether mixture as solvent.

<u>Conversion of erythro-2-{Tetrahydropyran-2-yl}propanoic Acid t-Butylthio Ester (erythro-17g) to</u> erythro-17d. A solution of the thio ester (17g) (27 mg, 0.12 mmol) in ether (1 ml) was treated with ethereal solution of phenyllithium (0.08 ml, 0.12 mmol) at -78 °C for 30 min. Workup by usual procedure followed by preparative TLC being developed with a 2:1 petroleum ether/ether mixture gave <u>erythro-17d</u> (6 mg, 22%) together with starting <u>erythro-17g</u> (11mg, 41% recovery). Neither <u>threo-17g</u> nor <u>threo-17d</u> was detected.

Chromatographic, Spectral, and Analytical Data of Products.

<u>3-Methoxy-1-phenylhexan-1-one</u> (6a). Liquid chromatography (LC): silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 1680 cm⁻¹; ¹H NMR (CCl₄) 7.91 (m, 2H, aromatic), 7.40 (m, 3H, aromatic), 3.79 (m, 1H, CHO), 3.37 (s, 3H, CH₃O), 3.21 (dd, 1H, \underline{J} = 16.6 and 6.4 Hz, CH₂CO), 2.75 (dd, 1H, \underline{J} = 16.6 and 6.0 Hz, CH₂CO), 1.53 (m, 4H, CH₂), 0.92 (t, 3H, \underline{J} = 6.3 Hz, CH₃); Ms <u>m/z</u> (rerative intensity) 71 (14), 77 (33), 105 (100), 173 (27), 184 (17), 191 (13), 206 (11). Found: C, 75.8;

H, 8.7%. Calcd for C₁₃H₁₈O₂: C, 75.7; H, 8.8%.

<u>3-Benzyloxy-4-methyl-1-phenylpentan-1-one</u> (6b). I.C: silica gel, 7:1 petroleum ether/ether as eluant. IR (neat) 1683 cm⁻⁷; ¹H NMR (CCl₄) 8.1–7.8 (m, 2H, aromatic), 7.5–7.3 (m, 3H, aromatic), 7.12 (brs, 5H, aromatic), 4.45 (s, 2H, CH₂Ph),4.2–3.9 (m, 1H, CHO), 3.5–2.7 (m, 2H, CH₂CO), 2.0 (m, 1H, CH), 1.00 (d, 6H, \underline{j} = 6.4 Hz, CH₃). Found: C, 80.6; H, 7.9%. Calcd for C₁₉H₂₂O₂: C, 80.8; H, 7.9%.

<u>3-Methoxy-3-methyl-1-phenylbutan-1-one (6c).</u> LC: silica gel, 7:1 petroleum ether/ether as eluant. IR (neat) 1674 cm⁻¹; ¹H NMR (CCl₄) 7.92 (m, 2H, aromatic), 7.42 (m, 3H, aromatic), 3.15 (s, 3H, CH₃O), 3.02 (s, 2H, CH₂CO), 1.27 (s, 6H, CH₃). Found: C, 75.2; H, 8.5%. Calcd for $C_{12}H_{16}O_2$: C, 75.0; H, 8.4%.

 $\frac{1-\text{Phenyl-2-(tetrahydrofuran-2-yl]ethan-1-one} (6d)}{11000}, I.C: silica gel, 7:1 petroleum ether/ether as eluant. IR (neat) 1680 cm⁻¹; ¹H NMR (CCl₄) 8.1–7.8 (m, 2H, aromatic), 7.6–7.2 (m, 3H, aromatic), 4.5–4.0 (m, 1H, CHO), 3.9–3.6 (m, 2H, CH₂O), 3.12 (dd, 1H, <math>1 \times 15.6$ and 5.4 Hz, CH₂CO), 2.85 (dd, 1H, 1×15.6 and 7.8 Hz, CH₂CO), 2.4–1.3 (m, 4H, CH₂). Found: C, 75.5; H, 7.4%. Calcd for C₁₂H₁₄O₂: C, 75.8; H, 7.4%.

<u>1-Phenyl-2-(tetrahydropyran-2-yl)ethan-1-one (6e)</u>. LC: silica gel, 7:1 petroleum ether/ether as eluant. IR (neat) 1685 cm⁻¹; ¹H NMR (CCl₄) 8.1–7.8 (m, 2H, aromatic), 7.6–7.2 (m, 3H, aromatic), 4.1–3.4 (m, 3H, CHO and CH₂O), 3.25 (dd, 1H, 1 = 15.2 and 6.4 Hz, CH₂CO), 2.68 (dd, 1H, 1 = 15.2 and 6.4 Hz, CH₂CO), 2.68 (dd, 1H, 1 = 15.2 and 7.6 Hz, CH₂CO), 2.0–1.2 (m, 6H, CH₂). Found: C, 76.2; H, 8.0%. Calcd for C₁₃H₁₆O₂: C, 76.4; H, 7.9%.

<u>5-Benzyloxy-2,2,6-trimethylheptan-3-one</u> (6f). LC: silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 1708 cm⁻¹; ¹H NMR (CDCl₃) 7.18 (s, 5H, aromatic), 4.43 (s, 2H, CH₂Ph), 3.85 (ddd, 1H, 1 = 8.2, 6.1, and 4.3 Hz, CHO), 2.77 (dd, 1H, 1 = 16.0 and 8.2 Hz, CH₂CO), 2.25 (dd, 1H, 1 = 16.0 and 4.3 Hz, CH₂CO), 1.83 im, 1H, CH), 1.08 (s, 9H, CH₃), 0.95 (d, 3H, 1 = 7.2 Hz, CH₃). Found: C, 77.9; H, 9.9%. Calcd for C₁₇H₂₆O₂: C, 77.8; H, 10.0%.

3.3-Dimethyl-1-(tetrahydropyrap-2-yl)butan-2-one (6g). LC: sillca gel, 4:1 petroleum ether/ether as eluant. IR (neat) 1705 cm⁻¹; ¹H NMR (CCl₄) 3.9-3.2 (m, 3H, CHO and CH₂O), 2.71 (dd, 1H, 1 = 16.3 and 7.0 Hz, CH₂CO), 2.21 (dd, 1H, 1 = 16.3 and 7.0 Hz, CH₂CO), 1.9-1.3 (m, 6H, CH₂), 1.03 (s, 9H, CH₃). Found: C, 71.8; H, 11.2%. Calcd for C₁₁H₂₀O₂: C, 71.7; H, 10.9%.

<u>3-Methoxy-2,2-dimethylhexanal (6h).</u> LC: silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 2700, 1722 cm⁻¹; ¹H NMR (CCl₄) 9.46 (s, 1H, HCO), 3.37 (s, 3H, CH₃O), 3.14 (t, 1H, J = 5.0 Hz, CHO), 1.8–0.8 (m, 7H, CH₂ and CH₃), 1.03 (s, 3H, CH₃), 0.98 (s, 3H, CH₃). Found: C, 68.5; H, 11.3%. Calcd for C_gH₁₈O₂: C, 68.3; H, 11.5%.

 $\frac{2-(2-Methoxypropan-2-y]cyclopentanone (6k)}{112}. LC: silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 1739 cm⁻¹; ¹H NMR (CCl₄) 3.09 (s, 3H, CH₂O), 2.3-1.5 (m, 7H, CH and CH₂), 1.27 (s, 3H, CH₃), 1.12 (s, 3H, CH₃). Found: C, 69.2; H, 10.3%. Calcd for C₉H₁₆O₂: C, 69.2; H, 10.3%.$

 $\frac{2-(2-Methoxypropan-2-yi)cyclohexanone (61)}{1708 cm^{-1}; {}^{1}H NMR (CCl_4) 3.07 (s, 3H, CH_3O), 2.5-1.2 (m, 9H, CH and CH_2), 1.21 (s, 3H, CH_3), 1.14 (s, 3H, CH_3). Found: C, 70.3; H, 10.4%. Calcd for C₁₀H₁₈O₂: C, 70.5; H, 10.7%.$

2-Dimethoxymethylcyclohexanone (6m). LC: silica gel, 7:1 petroleum ether/ether as eluant. IR (neat) 1711 cm⁻¹; ¹H NMR (CCi₄) 4.58 (d, 1H, 1 = 6.0 Hz, OCHO), 3.34 (s, 6H, CH₃O), 2.7-1.4 (m, 9H, CH and CH₂). Found: C, 63.0; H, 9.6%. Calcd for C₉H₁₆O₃: C, 62.8; H, 9.4%.

 $\frac{2-[2-Methoxypropan-2-y])-6-methylcyclohexanone (6n).}{122} LC: silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 1703 cm⁻¹; ¹H NMR (CCl₄) 3.13 (s, 3H, CH₃O), 2.7-2.2 (m, 2H, CHCO), 2.1-1.2 (m, 6H, CH and CH₂), 1.22 (s, 3H, CH₃), 1.11 (s, 3H, CH₃), 1.01 (d, 3H, <math>\perp$ = 6.8 Hz, CH₃). Found: C, 71.6; H, 11.0%. Calcd for C₁₁H₂₀O₂: C, 71.7; H, 10.9%.

 $\frac{2-\{1-Methoxy-4-methy\}-6-oxohepty\}(xyclohexanone (60).}{1000}$ LC: silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 1708 cm⁻¹; ¹H NMR (CCl₄) 3.55 (m, 1H, CHO), 3.27 (s, 2.4H, CH₃O), 3.21 (s, 0.6H, CH₃O), 2.5-1.2 (m, 14H, CH and CH₂), 2.04 (s, 3H, CH₃CO), 0.89 (d, 3H, 1 = 6.2 Hz, CH₃). Found: C, 70.5; H, 19.3%. Calcd for C₁₅H₂₆O₃: C, 70.8; H, 10.3%.

<u>3-Benzyloxy-1-phenylpropan-1-one (8a).</u> LC: silica gei, 5:1 petroleum ether/ether as eluant. IR (neat) 1683 cm⁻¹; ¹H NMR (CCl₄) 8.0–7.8 (m, 2H, aromatic), 7.6–7.0 (m, 3H, aromatic), 7.23 (s, 5H, aromatic), 4.48 (s, 2H, CH₂Ph), 3.82 (t, 2H, I = 6.9 Hz, CH₂O), 3.15 (t, 2H, I = 6.9 Hz, CH₂CO); Ms m/z (rerative intensity) 77 (50), 91 (50), 105 (100), 134 (70), 135 (100), 240 (2). Found: C, 80.0; H, 6.6%. Calcd for C₁₆H₁₆O₂: C, 80.0; H, 6.7%.

3-Benzyloxy-2-methyl-1-phenylpropan-1-one (8b).

LC: silica gel, 10:1 petroleum ether/ether as

eluant. IR (neat) 1680 cm⁻¹; ¹H NMR (CCl₄) 8.0--7.7 (m, 2H, aromatic), 7.5--7.1 (m, 3H, aromatic), 7.18 (s, 5H, aromatic), 4.43 (s, 2H, CH₂Ph), 3.8--3.4 (m, 3H, CHO and CH₂O), 1.20 (d, 3H, \underline{J} = 6.0 Hz, CH₃); Ms <u>m/z</u> (rerative intensity) 71 (35), 91 (65), 105 (100), 134 (20), 149 (80), 254 (2). Found: C, 80.5; H, 7.1%. Calcd for C₁₇H₁₈O₂: C, 80.3; H, 7.1%.

 $\frac{2-\text{Benzyloxymethylcyclopentanone} (8c).}{1738 \text{ cm}^{-1}; \text{ H NMR (CCl}_4) 7.23 \text{ (s, 5H, aromatic), 4.43 (s, 2H, CH}_2\text{Ph}\text{), 3.58 (d, 2H, I} = 3.5 \text{ Hz}, CH}_2\text{O}\text{), 2.5-1.6 (m, 7H, CH and CH}_2\text{); Ms } \underline{m/z}$ (relative intensity) 91 (100), 97 (100), 107 (35), 204 (15). Found: C, 76.2; H, 7.8%. Calcd for $C_{13}H_{16}O_2$: C, 76.4; H, 7.9%.

<u>2-Benzyloxymethylcyclohexanone</u> (8d). LC: silica gei, 5:1 petroleum ether/ether as eluant. IR (neat) 1712 cm⁻¹; ¹H NMR (CCl₄) 7.23 (s, 5H, aromatic), 4.45 (s, 2H, CH₂Ph), 3.72 (dd, 1H, $\underline{J} = 9.0$ and 4.8 Hz, CH₂O), 3.30 (dd, 1H, $\underline{J} = 9.0$ and 7.5 Hz, CH₂O), 2.7–1.2 (m, 9H, CH and CH₂); Ms $\underline{m/z}$ (relative intensity) 91 (100), 218 (20). Found: C, 76.9; H, 8.5%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

<u>2-Methoxymethylcyclohexanone</u> (8e). LC: silica gel, 3:1 petroleum ether/ether as eluant. IR (neat) 1715 cm⁻¹; ¹H NMR (CCl₄) 3.62 (dd, 1H, \underline{J} = 9.8 and 4.5 Hz, CH₂O), 3.27 (s, 3H, CH₃), 3.22 (dd, 1H, \underline{J} = 9.8 and 8.0 Hz, CH₂O), 2.7–1.2 (m, 9H, CH and CH₂). Found: C, 67.4; H, 10.2%. Calcd for C₈H₁₄O₂: C, 67.6; H, 9.9%.

 $\frac{2-\text{Benzyloxymethyl-6-methylciohexanone} (8f). LC: silica gel, 7:1 petroleum ether/ether as eluant. Less polar isomer (25% yield). TLC R_f 0.36 (5:1 petroleum ether/ether); IR (neat) 1708 cm⁻¹; ¹H NMR (CCl₄) 7.22 (s, 5H, aromatic), 4.45 fs, 2H, CH₂Ph), 4.0-3.1 (m, 2H, CH₂O), 2.7-1.3 (m, 8H, CH and CH₂), 0.95 (d, 3H, <math>\downarrow$ = 6.3 Hz, CH₃). Found: C, 77.4; H, 8.5%. Calcd for C₁₅H₂₀O₂: C, 77.6; H, 8.7%. More polar isomer (49% yield). TLC R_f 0.31 (5:1 petroleum ether/ether); IR (neat) 1712 cm⁻¹; ¹H NMR (CCl₄) 7.22 (s, 5H, aromatic), 4.45 fs, 2H, CH₂Ph), 3.8-3.3 (m, 2H, CH₂O), 2.8-1.6 (m, 8H, CH and CH₂), 1.05 (d, 3H, \downarrow = 7.0 Hz, CH₃). Found: C, 77.5; H, 8.7%. Calcd for C₁₅H₂₀O₂: C, 77.6; H, 8.7%.

erythro-3-Methoxy-2-methyl-1,3-diphenylpropan-1-one (erythro-17a). LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC \underline{R}_{f} 0.41 (5:1 petroleum ether/ether); IR (neat) 1675 cm⁻¹; ¹H NMR (CCl₄) 8.1-7.0 (m, 10H, aromatic), $\frac{1}{4}$.36 (d, 1H,] = 8.2 Hz, CHO), 3.74 (dq, 1H,] = 8.2 and 7.8 Hz, CHCO), 3.18 (s, 3H, CH₃O), 1.31 (d, 3H,] = 7.8 Hz, CH₃). Found: C, 80.3; H, 7.2%. Calcd for $C_{17}H_{18}O_2$: C, 80.3; H, 7.1%.

threo-<u>3-Methoxy-2-methyl-1,3-diphenylpropan-1-one</u> (threo-**17a**). LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC $\underline{R_f}$ 0.37 (5:1 petroleum ether/ether); IR (neat) 1677 cm⁻¹; IH NMR (CCl₄) 8.1–7.0 (m, 10H, aromatic), 4.36 (d, 1H, \underline{I} = 8.2 Hz, CHO), 3.9–3.6 (m, 1H, CHCO), 3.07 (s, 3H, CH₃O), 0.78 (d, 3H, \underline{I} = 7.4 Hz, CH₃). Found: C, 80.5; H, 7.2%. Calcd for C₁₇H₁₈O₂: C, 80.3; H, 7.1%.

<u>A Mixture of erythro- and threo-2-(Tetrahydropyran-2-yl)propanal (17b).</u> LC: silica gel, 4:1 petro-leum ether/ether as eluant. IR (neat) 2730, 1725 cm⁻¹; ¹H NMR (CCl₄) 9.67 (m, 1H, HCO), 4.2-3.3 (m, 3H, CHO and CH₂O), 2.6-2.1 (m, 1H, CHCO), 2.0-1.3 (m, 6H, CH and CH₂), 1.08 (d, 2.1H, \perp = 7.0 Hz, CH₃), 1.04 (d, 0.9H, \perp = 7.4 Hz, CH₃). Found: C, 67.6; H, 10.0%. Calcd for C₈H₁₄O₂: C, 67.6; H, 9.9%.

<u>A Mixture of</u> erythro- and threo-3-Benzyloxy-2-methyl-1,3-diphenylpropan-1-one (17c). LC: silica gel, 10:1 petroleum ether/ether as eluant. IR (neat) 1680 cm⁻¹; ¹H NMR (CCl₄) 8.1-7.0 (m, 15H, aromatic), 4.7-3.7 (m, 4H, CH₂Ph, CHO, and CHCO), 1.37 (d, 2.6H, <u>1</u> = 7.5 Hz, CH₃), 0.84 (d, 0.4H, <u>1</u> = 7.4 Hz, CH₃). Found: C, 84.0; H, 6.7%. Calcd for $C_{23}H_{22}O_2$: C, 83.6; H, 6.8%.

erythro-<u>2-{Tetrahydropyran-2-yi}-1-phenylpropan-1-one</u> (erythro-<u>17d)</u>. LC: silica gel, 5:1 petroleum ether/ether as eluant. TLC $\underline{R_f}$ 0.33 (10:1 petroleum ether/ethyl acetate); IR (neat) 1676 cm⁻¹; ¹H NMR (CCl₄) 8.0-7.8 (m, 2H, aromatic), 7.5-7.3 (m, 3H, aromatic), 3.94 (dm, 1H, \underline{J} = 11.0 Hz, CHO), 3.6-3.2 (m, 3H, CHCO and CH₂O), 1.9-1.3 (m, 6H, CH₂), 1.20 (d, 3H, \underline{J} = 6.6 Hz, CH₃). Found: C, 77.0; H, 8.3%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

threo-2-(Tetrahydropyran-2-yl)-1-phenylpropan-1-one (threo-17d). LC: silica gel, 5:1 petroleum ether/ether as eluant. TLC \underline{R}_f 0.31 (10:1 petroleum ether/ethyl acetate); IR (neat) 1680 cm⁻¹; $\overset{I}{H}$ NMR (CCl₄) 8.0–7.8 (m, 2H, aromatic), 7.5–7.3 (m, 3H, aromatic), 3.83 (dm, 1H, \underline{J} = 12.0 Hz, CHO), 3.7–3.2 (m, 3H, CHCO and CH₂O), 2.0–1.3 (m, 6H, CH₂), 1.06 (d, 3H, \underline{J} = 6.8 Hz, CH₃). Found: C, 76.8; H, 8.4%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

erythro-<u>1-Methoxy-2,4,4-trimethyl-1-phenylpentan-3-one</u> (erythro-<u>17e).</u> LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC \underline{R}_{f} 0.47 (5:1 petroleum ether/ether); IR (neat) 1708 cm⁻¹; H NMR (CCl₄) 7.23 (s, 5H, aromatic), 4.11 d, 1H, J = 10.0 Hz, CHO), 3.10 (dq, 1H, J = 10.0 and 6.3 Hz, CHCO), 3.00 (s, 3H, CH₃O), 1.17 (s, 9H, CH₃), 0.66 (d, 3H, J = 6.3 Hz, CH₃). Found: C, 77.2; H, 9.5%. Calcd for C₁₅H₂₂O₂: C, 76.9; H, 9.5%.

threo-<u>1-Methoxy-2,4,4-trimethyl-1-phenylpentan-3-one</u> (threo-**17e**). LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC \underline{R}_f 0.41 (5:1 petroleum ether/ether); IR (neat) 1710 cm⁻¹; ¹H NMR (CCl₄) 7.18 (s, 5H, aromatic), 4.13 (d; 1H, <u>1</u> = 11.0 Hz, CHO), 3.2–3.0 (m, 1H, CHCO), 3.13 (s, 3H, CH₃O), 1.16 (d, 3H, <u>1</u> = 6.5 Hz, CH₃), 0.80 (s, 9H, CH₃). Found: C, 77.1; H, 9.4%. Calcd for C₁₅H₂₂O₂: C, 76.9; H, 9.5%.

erythro-<u>3-Methoxy-2-methyl-3-phenylpropionic Acid t-Butylthio Ester (erythro-17f).</u> LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC $\underline{R_f}$ 0.62 (5:1 petroleum ether/ether); IR (neat) 1680 cm⁻¹;

¹H NMR (CCl₄) 7.25 (s, 5H, aromatic), 4.23 (d, 1H, 1 = 7.4 Hz, CHO), 3.18 (s, 3H, CH₃O), 2.70 (dq, 1H, 1 = 7.4 and 7.4 Hz, CHCO), 1.12 (s, 9H, CH₃), 1.08 (d, 3H, 1 = 7.4 Hz, CH₃). Found: C, 67.5; H, 8.5%. Calcd for C₁₅H₂₂O₂S: C, 67.6; H, 8.3%.

threo-3-Methoxy-2-methyl-3-phenylpropionic Acid t-Butylthio Ester (threo-17f). LC: silica ge, [0:1 petroleum ether/ether as eluant. TLC \underline{R}_f 0.60 (5:1 petroleum ether/ether); IR (neat) 1693 cm⁻¹; ¹H NMR (CCl₄) 7.23 (s, 5H, aromatic), 4.20 td, 1H, $\underline{I} = 9.3$ Hz, CHO), 3.0–2.4 (m, 1H, CHCO), 3.10 (s, 3H, CH₃O), 1.47 (s, 9H, CH₃), 0.78 (d, 3H, $\underline{I} = 6.2$ Hz, CH₃). Found: C, 67.7; H, 8.4%. Calcd for C₁₅H₂₂O₂S: C, 67.6; H, 8.3%.

erythro-2-(Tetrahydropyran-2-yl)propionic Acid t-Butylthio Ester (erythro-17g). LC: silica gci, 15:1 petroleum ether/ether as eluant. TLC $\underline{R}_{\underline{f}}$ 0.55 (10:1 petroleum ether/ether); IR (neat) 1680 cm⁻¹; H NMR (CCi₄) 3.87 (dm, 1H, \underline{f} = 12.0 Hz; CHO), 3.6-3.1 (m, 2H, CH₂O), 2.38 (dq, 1H, \underline{f} = 9.0 and 6.8 Hz, CHCO), 2.0-1.3 (m, 6H, CH₂), 1.40 (s, 9H, CH₃), 1.10 (d, 3H, \underline{f} = 6.8 Hz, CH₃). Found: C, 62.6; H, 9.6%. Calcd for C₁₂H₂₂O₂S: C, 62.6; H, 9.6%.

threo-2-(Tetrahydropyran-2-yl)propionic Acid t-Butylthio Ester (threo-17g). LC: silica gel, 15:1 petroleum ether/ether as eluant. TLC \underline{B}_{f} 0.48 (10:1 petroleum ether/ether); IR (neat) 1680 cm⁻¹; H NMR (CCl₄) 3.90 (dm, 1H, \underline{I} = 12.4 Hz; CHO), 3.7-3.1 (m, 2H, CH₂O), 2.55 (dq, 1H, \underline{I} = 7.0 and 7.0 Hz, CHCO), 2.0-1.3 (m, 6H, CH₂), 1.12 (s, 9H, CH₃), 1.03 (d, 3H, \underline{I} = 7.0 Hz, CH₃). Found: C, 62.3; H, 9.9%. Calcd for C₁₂H₂₂O₂S: C, 62.6; H, 9.6%.

<u>Methyl</u> erythro-<u>3-Methoxy-2-methyl-3-phenylpropionate</u> (erythro-<u>17h</u>). I.C: silica get 5:1 petroleum ether/ether as eluant. TLC R_f 0.61 (2:1 petroleum ether/ether); IR (neat) 1738 cm⁻¹; ¹H NMR (CCl₄) 7.20 (s, 5H, aromatic), 4.32 (d; 1H, I = 7.3 Hz, CHO), 3.43 (s, 3H, CH₃O), 3.18 (s, 3H, CH₃O), 2.62 (dq, 1H, I = 7.3 and 7.3 Hz, CHCO), 1.18 (d, 3H, I = 7.3 Hz, CH₃). Found: C, 69.5; H, 7.8%. Calcd for $C_{12}H_{16}O_3$: C, 69.2; H, 7.7%.

<u>Methyl</u> threo-<u>3-Methoxy-2-methyl-3-phenylpropionate</u> (threo-**17h**). I.C: silica gel, 5:1 petroleum ether/ether as eluant. TLC R_f 0.52 (2:1 petroleum ether/ether); IR (neat) 1735 cm⁻¹; ¹H NMR (CCl₄) 7.23 (s, 5H, aromatic), 4.15 (d; 1H, \perp = 9.6 Hz, CHO), 3.66 (s, 3H, CH₃O), 3.11 (s, 3H, CH₃O), 2.9-2.3 (m, IH, CHCO), 0.80 (d, 3H, \perp = 7.0 Hz, CH₃). Found: C, 68.9; H, 7.5%. Calcd for C₁₂H₁₆O₃: C, 69.2; H, 7.7%.

erythro-2-(1-Methoxybutyl)cyclohexanone (erythro-171). LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC R_f 0.60 (7:1 petroleum ether/ethyl acetate); IR (neat) 1718 cm⁻¹; ¹H NMR (CCl₄) 3.62 (m, 1H, CHCOI, 3.26 (s, 3H, CH₃O), 2.4-1.2 (m, 13H, CH and CH₂), 0.92 (t, 3H, 1 = 5.0 Hz, CH₃). Found: C, 71.7; H, 10.9%. Calcd for C₁₁H₂₀O₂: C, 71.7; H, 10.9%.

threo-2-(1-Methoxybutyl)cyclohexanone (threo-171), LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC \underline{R}_{f} 0.54 (7:1 petroleum ether/ethyl acetate); IR (neat) 1720 cm⁻¹; ¹H NMR (CCl₄) 3.52 (m, 1H, CHCO), -3.24 (s, 3H, CH₃O), 2.5-1.2 (m, 13H, CH and CH₂), 0.93 (t, 3H, \underline{I} = 5.0 Hz, CH₃). Found: C, 71.5; H, 11.2%. Calcd for C₁₁H₂₀O₂: C, 71.7; H, 10.9%.

erythro-2-(1-Methoxy-2-methylpropyl)cyclohexanone (erythro-17]). LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC R_f 0.56 (10:1 petroleum ether/ethyl acetate); IR (neat) 1717 cm⁻¹; H NMR (CCl₄) 3.5-3.3 (m, 1H, CHCO), 3.36 (s, 3H, CH₃O), 2.5-1.2 (m, 10H, CH and CH₂), 0.96 (d, 3H, \perp = 7.0 Hz, CH₃), 0.89 (d, 3H, \perp = 7.0 Hz, CH₃). Found: C, 71.6; H, 10.9%. Calcd for C₁₁H₂₀O₂: C, 71.7; H, 10.9%.

threo-2-(1-Methoxy-2-methylpropyl)cyclohexanone (threo-17j). LC: silica gel, 10:1 petrpleum ether/ether as eluant. TLC R₁ 0.49 (10:1 petroleum ether/ethyl acetate); IR (neat) 1720 cm⁻¹; H NMR (CCl₄) 3.4-3.2 (m, 1H, CHCO), 3.37 (s, 3H, CH₃O), 2.6-1.2 (m, 10H, CH and CH₂), 0.92 (d, 3H, 1 = 6.3 Hz, CH₃), 0.86 (d, 3H, 1 = 7.0 Hz, CH₃). Found: C, 71.5; H, 11.1%. Calcd for C₁₁H₂₀O₂: C, 71.7; H, 10.9%.

erythro-2-Methoxybenzylcyclohexanone (erythro-17k). LC: silica gel, 10;1 petroleum ether/ether as eluant. TI.C \underline{R}_{1} 0.63 (10:1 benzene/ethyl acetate); IR (neat) 1707 cm⁻¹; ¹H NMR (CCl₄) 7.22 (s, 5H, aromatic), 4.27 (d, 1H, <u>1</u> = 3.9 Hz, CHO), 3.22 (s, 3H, CH₃O), 2.5-1.2 (m, 9H, CH and CH₂); Ms <u>m/z</u> (relative intensity) 77 (23), 91 (18), 121 (100), 186 (4), 203 (3), 218 (6). Found: C, 77.2; H, 8.2%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

threo-2-Methoxybenzylcyclohexanone (threo-17k). LC: silica gel, 10:1 petroleum ether/ether as eluant. TLC \underline{R}_4 0.51 (10:1 benzene/ethyl acetate); IR (neat) 1712 cm⁻¹; H NMR (CCl₄) 7.25 (s, 5H, aromatic), 4.51-(d, 1H, <u>1</u> = 7.0 Hz, CHO), 3.16 (s, 3H, CH₃O), 2.5-1.2 (m, 9H, CH and CH₂). Found: C, 76.9; H, 8.3%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

<u>2-(Octahydrobenzopyran-2-yi)-1-phenylethan-1-one (31)</u>. LC: silica gel, 10:1 petroleum ether/ethyl acetate as eluant. IR (neat) 1682 cm⁻¹; ¹H NMR (CDCl₃) 7.96 (d, 2H, 1 = 8.8 Hz, aromatic), 7.56 (t, 1H, 1 = 8.8 Hz, aromatic), 7.48 (t, 2H, 1 = 8.8 Hz, aromatic), 4.26 (ddd, 1H, 1 = 7.6, 6.9, and 5.2 Hz, CHO), 3.43 (dd, 1H, 1 = 15.9 and 5.2 Hz, CH₂CO), 3.30 (dd, 1H, 1 = 15.9 and 7.6 Hz, CH₂CO), 3.23 (ddd, 1H, 1 = 10.4, 10.4, and 3.5 Hz, CHOI, 2.1–1.0 (m, 13H, CH and CH₂). Found: C, 79.0; H, 8.6%. Calcd for C₁₇H₂₂O₂: C, 79.0; H, 8.6%.

cis-2-(4-Methyltetrahydropyran-2-yl)-1-phenylethan-1-one (33a). LC: silica gel, 3:1 petroleum ether/ether as eluant. IR (neat) 1690 cm⁻¹; H NMR (CCl₄) 8.0–7.8 (m, 2H, aromatic), 7.5–7.2 (m, 3H, aromatic), 4.16 (m, 1H, CHO), 3.66 (m, 2H, CH₂O), 3.21 (dd, 1H, 1 = 14.0 and 6.0 Hz, CH₂CO), 2.75 (dd, 1H, 1 = 14.0 and 7.0 Hz, CH₂CO), 2.3–1.2 (m, 5H, CH and CH₂), 1.13 (d, 3H, 1 = 7.0 Hz, CH₃). Found: C, 76.9; H, 8.6%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

cis-2-(6-Methyltetrahydropyran-2-yl)-1-phenylethan-1-one (33b). LC: silica gel, 3:1 petroleum ether/ether as eluant. IR (neat) 1690 cm⁻¹; ¹H NMR (CCl₄) 8.0–7.8 (m, 2H, aromatic), 7.5–7.3 (m, 3H, aromatic), 4.33 (m, 1H, CHO), 3.92 (m, 1H, CHO), 3.22 (dd, 1H, I = 15.0 and 6.0 Hz, CH₂CO), 2.90 (dd, 1H, I = 15.0 and 7.6 Hz, CH₂CO), 1.9–1.2 (m, 6H, CH₂), 1.17 (d, 3H, I = 7.2 Hz, CH₃). Found: C, 76.8; H, 8.5%. Calcd for C₁₄H₁₈O₂: C, 77.0; H, 8.3%.

References and Notes

- 1. Review on directed aldol reactions: Mukaiyama, T. Org. React. 1982, 28, 203.
- Reviews on stereoselection in aldol reaction: (a) Heathcock, C. H. In <u>Comprehensive Carbanion</u> <u>Chemistry</u>; Durst, T.; E. Buncel, E., Eds.; Elsevier: Amsterdam, 1981; Vol. 2, Chapter 4; (b) Evans, D. A.; Nelson, J. V.; Taber, T. R. <u>Top. Stereochem.</u> 1982, <u>13</u>, 1; (c) Ito, Y.; Masamune, S.; Choy, W. J. Synth. Org. Chem. Jpn. 1983, <u>41</u>, 117; (d) Masamune, S. <u>Heterocycles</u> 1984, <u>21</u>, 107; (e) Heathcock, C. H. In <u>Asymmetric Synthesis</u>; Morrison, J. D., Ed.; Academic: Orlando, 1984; Vol. 3, pp 111-212; (f) Mukaiyama, T. <u>Pure Appl. Chem.</u> 1986, <u>58</u>, 505; (g) Braun, M. <u>Angew.</u> <u>Chem., Int. Ed. Engl.</u> 1987, <u>26</u>, 24.
- Applications to synthesis of natural products: (a) Masamune, S.; Hirama, M.; Mori, S.; Ali, Sk. A.; Garvey, D. S. J. Am. Chem. Soc. 1981, 103, 1568; (b) Masamune, S.; Lu, L. D.-L.; Jackson, W. P.; Kaiho, T.; Toyoda, T. J. Am. Chem. Soc. 1982, 104, 5523; (c) Masamune, S.; Imperiali, B.; Garvey, D. S. J. Am. Chem. Soc. 1982, 104, 5528; (d) Jackson, W. P.; Lu Chang, L. D.-L.; Imperiali, B.; Choy, W.; Tobita, H.; Masamune, S. In <u>Strategies and Tactics in Organic Synthesis;</u> Lindberg, T., Ed., Academic: Orlando, 1984; Chapter 5; (e) Heathcock, C. H.; Montgomery, S. H. <u>Tetrahedron Lett.</u> 1985, 26, 1001; (f) Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pilli, R.; Badertscher, U. J. Org. Chem. 1985, 50, 2095; (g) Evans, D. A.; Dow, R. L. <u>Tetrahedron Lett.</u> 1986, 27, 1007; (h) Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476.
- 4. (a) Noyori, R.; Nishida, I.; Sakata, J.; Nishizawa, M. <u>J. Am. Chem, Soc.</u> 1980, 102, 1223;
 (b) Noyori, R.; Nishida, I.; Sakata, J. <u>J. Am. Chem. Soc.</u> 1981, 103, 2106; (c) Noyori, R.; Nisida,
 I.; Sakata, J. <u>J. Am. Chem. Soc.</u> 1983, 105, 1598; (d) Noyori, R. In <u>Selectivity-a Goal for</u> <u>Synthetic Efficiency</u>; Bartmann, W.; Trost, B. M., Eds., Verlag Chemie: Weinheim, 1983;
 pp 121-136.
- (a) Kuwajima, I.; Nakamura, E. J. Am. Chem. Soc. 1975, 97, 3257; (b) Kleshik, W. A.; Buse,
 C. T.; Heathcock, C. H. J. Am. Chem. Soc. 1977, 99, 247; (c) Noyori, R.; Yokoyama, K.; Sakata,
 J.; Kuwajima, I.; Nakamura, E.; Shimizu, M. J. Am. Chem. Soc. 1977, 99, 1265; (d) Kuwajima, I.;
 Nakamura, E.; Shimizu, M. J. Am. Chem. Soc. 1982, 104, 1025; (d) Bellassoued, M.; Dubois, J.-E.;
 Bertounesque, E. Tetrahedron Lett. 1986, 27, 2623.
- (a) Noyori, R.; Murata, S.; Suzuki, M. <u>Tetrahedron</u> 1981, <u>37</u>, 3899; (b) Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Gotz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krageloh, K.; Oesterle, T.; Steppan, W.; West, W.; Simchen, G. <u>Synthesis</u> 1982, 1.
- Reviews on synthetic utility of enol silyl ethers: (a) Rasmussen, J. K. <u>Synthesis</u> 1977, 91;
 (b) Fleming, I. In <u>Comprehensive Organic Chemistry</u>; Jones, D. N., Ed., Pergamon: Oxford, 1979;
 Vol. 3, pp 584-592; (c) Fleming, I. <u>Chimia</u> 1980, 34, 265; (d) Fleming, I. <u>Chem. Soc. Rev.</u> 1981, 83; (e) Fleming, I. <u>Bull. Soc. Chim. Fr.</u> 1981, 11-7.
- Preliminary reports: (a) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 3248;
 (b) Murata, S.; Suzuki, M.; Noyori, R. <u>Tetrahedron Lett.</u> 1980, 21, 2527; (c) Murata, S.; Noyori, R. <u>Tetrahedron Lett.</u> 1982, 23, 2601.
- 9. The original postulate 6a,8 is modified as this.
- For importance of pentacoordinate silicon species as reactive intermediates, see: (a) Damrauer, R.; DePuy, C. H.; Bierbaum, V. M. <u>Organometallics</u> 1982, 1, 1553; (b) Bassindale, A. R.; Stout, T. J. <u>Organomet. Chem.</u> 1982, 238, C41; (c) Sheldon, J. C.; Hayes, R. N.; Bowie, J. H. J. Am. <u>Chem. Soc.</u> 1984, 106, 7711; (d) Corriu, R. J. P.; Gue'rin, C.; Moreau, J. J. E. <u>Top. Stereochem.</u> 1984, <u>15</u>, 43.
- 11. Perst, H. Oxonium Ions in Organic Chemistry; Verlag Chemie: Weinheim, 1971; pp 14-15.
- (a) Chaudhary, S. K.; Hernandez, O. <u>Tetrahedron Lett.</u> 1979, 99; (b) Hergott, H. H.; Simchen, G. <u>Liebigs Ann. Chem.</u> 1980, 1718; (c) Murata, S.; Suzuki, M.; Noyori, R. <u>Bull. Chem. Soc. Jpn.</u> 1982,

55, 247; (d) Bassindale, A. R.; Stout, T. J. Chem. Soc., Perkin Trans. 2 1986, 221; (e) Bassindale, A. R.; Lau, J. C.-Y.; Stout, T; and Taylor, P. G. J. Chem. Soc., Perkin Trans. 2 1986, 227.

- 13. Reaction of 41 with benzaldehyde, (E)-2-hexenal, and cinnamaldehyde under the comparable conditions (5 mol % TMSOTf, dichloromethane, -78 °C, 6h) gave corresponding aldol silyl ethers in 11% (erythro:threo = 55:45), 13%, and 27% yields, respectively. In the presence of 5% TMSOTf/9a, reaction of 41 with benzaldehyde in dichloromethane (20 °C, 18 h) gave trimethylsilyl ether of 34e in 41% yield (erythro:threo = 42:58). Trifluoromethanesulfonic acid (TfOH) acts as an efficient catalyst for reaction of enol silyl ethers and aldehydes. For example, reactions of 41 with 2-methylpropanal and benzaldehyde in the presence of 5 mol % of TfOH (CH₂Cl₂, -78 °C, 0.5 h) gave trimethylsilyl ethers of 34d (82%, erythro:threo = 73:27) and 34e (86%, erythro:threo = 69:31), respectively.
- Reaction of carbonyl compounds with powerful nucleophiles proceeds through such hypervalent silicon intermediates. See: (a) Tsunoda, T.; Suzuki, M.; Noyori, R. <u>Tetrahedron Lett.</u> 1980, 21, 1357;
 (b) Yoshimura, J.; Horito, S.; Hashimoto, H. <u>Chem. Lett.</u> 1981, 375; (c) Suzuki, M.; Takada, H.; Noyori, R. <u>J. Org.Chem</u> 1982, 47, 902.
- 15. Some decrease in selectivity in reaction of **41** and **5c** by the use of TMSOTf/amine is perhaps due to higher temperature.
- Houk, K. N.; Paddon-Row, M. N.; Rondan, N. G.; Wu, Y.-D.; Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.; Li, Y.; and Loncharich, R. J. <u>Science</u> 1986, 231, 1108.
- (a) Mukaiyama, T.; Kobayashi, S.; Murakami, M. <u>Chem. Lett.</u> 1984, 1759; (b) Mukaiyama, T.;
 Kobayashi, S.; Murakami, M. <u>Chem. Lett.</u> 1985, 447; (c) Heathcock, C. H.; Hug, K. T.; Flippin, L. A. <u>Tetrahedron Lett.</u> 1984, 25, 5973; (d) Heathcock, C. H.; Davidsen, S. K.; Hug, K. T.; Flippin, L. A.; J. Org. Chem. 1986, 51, 3027.
- 18. In the absence of 4a, the equatorial acetate underwent rapid stereomutation to give thermodynamically the more favorable axial isomer exclusively (10% TMSOTf, CD₂Cl₂, 25 °C).
- (a) David, S.; Eisenstein, O.; Hehre, W. J.; Salem, L.; Hoffmann, R. J. Am. Chem. Soc. 1973, 95, 3806; (b) Eisenstein, O.; Anh, N. T.; Jean, Y.; Devaquet, A.; Cantacuze'ne, J.; Salem, L. <u>Tetrahedron</u> 1974, 30, 1717; (c) Retey, J.; Robinson, J. A. <u>Stereospecificity in Organic Chemistry</u> and Enzymology; Verlag Chemie: Weinheim, 1982, pp 33-35.
- (a) Chandrasekhar, S.; Kirby, A. J. J. Chem. Soc., Chem. Commum. 1978, 171; (b) Kirby, A. J.; Martin, R. J. J. Chem. Soc., Chem. Commun. 1978, 803; (c) Beaulieu, N.; Dickinson, R. A.; Delongchamps, P. Can. J. Chem. 1980, 58, 2531; (d) Van Eikeren, P. J. Org. Chem. 1980, 45, 4641; (e) Delongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: Oxford, 1983; pp 34-39; (f) Chandrasekhar, S.; Kirby, A. J.; Martin, R. J. J. Chem. Soc., Perkin Trans 2 1983, 1619; (g) Kirby, A. J.; Martin, R. J. J. Chem. Soc., Perkin Trans 2 1983, 1627; (h) Kirby, A. J.; Martin, R. J. J. Chem. Soc., Perkin Trans 2 1983, 1633; (i) Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett. 1984, 25, 1379; (j) Noyori, R.; Hayashi, M.; Hashimoto, S. In Organosilicon and Bioorganosilicon Chemistry; Sakurai, H., Ed.; Ellis Horwood: Chichester, 1985; pp 213-218.
- (a) Schmeisser, M.; Sartori, P.; Lippsmeier, B. <u>Chem. Ber.</u> 1970, 103, 868; (b) Roesky, H. W.; Giere, H. H. <u>Z. Naturforsch., B: Anorg. Chem., Org. Chem.</u> 1970, 25, 773; (c) Marsmann, H. C.; Horn, H.-G. <u>Z. Naturforsch., B: Anorg. Chem., Org. Chem.</u> 1972, 27, 1448.
- (a) House, H. O.; Crumrine, D. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973, 95, 3310; (b) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066; (c) Structures of the aldol products were assumed by ¹H NMR analyses using Lthree > Lerythro relationship.²⁸
- 23. House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1969, 34, 2324.
- (a) Anderson, C. B.; Sepp, D. T. <u>Tetrahedron</u> 1968, <u>24</u>, 1707; (b) Descores, G.; Sinou, D.; Martin, J.-C. <u>Bull. Soc. Chim. Fr.</u> 1970, 3730.
- (a) Buse, C. T.; Heathcock, C. H. <u>Tetrahedron Lett.</u> 1978, 1685; (b) Hiyama, T.; Kimura, K.; Nozaki, H. <u>Tetrahedron Lett.</u> 1981, 22, 1037.